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Abstract

The non-isothermal laminar ¯ow of the Bingham non-Newtonian ¯uid through a sudden pipe expansion with a

solid center-body placed upstream of the expansion plane, is investigated. The governing equations of conservation
of mass, momentum and energy are solved using the ®nite-di�erence numerical technique. The e�ects of center-
body-blockage-ratio, non-dimensional yield stress, Reynolds number, Prandtl number and Brinkman number on the
¯ow and heat transfer characteristics are studied. The obtained results indicate the complex nature of the present

viscoplastic ¯ow and heat transfer problem and reveal new features not encountered in the case of Newtonian
¯uids. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The Bingham constitutive equation has been exten-
sively used to describe the rheology of numerous visco-

plastic non-Newtonian ¯uids encountered in a large
variety of industrial applications [1]. The general 3D
constitutive equation relating the imposed stresses to

the ¯ow kinematics for a Bingham plastic is as follows
[2]:

t�ij �
0@Zp �

ty���������
1

2
_g�II

r 1A_g�ij for t�II > 2t2y �1a�

_g�ij � 0 for t�IIR2t2y �1b�

Here Zp and Y are the plastic viscosity and yield stress
(properties of the ¯uid), _g�ij� @u�i =@x �j � @u�j =@x �i is the

rate-of-deformation tensor, and _g�II is the second invar-
iant of the tensor _g�ij, given by _g�II� _g�ij _g

�
ij:

The apparent or e�ective viscosity displayed by a

Bingham plastic is:

m�eff

ÿ
_g�II
� � Zp �

ty���������
1

2
_g�II

r for t�II > 2t2y �2a�

m�eff

ÿ
_g�II
� � 1 for t�IIR2t2y �2b�

In simple shear ¯ows, rigid solid behavior is displayed
as long as the imposed deviatoric stress tensor is less
than or equal the materials yield stress. Shear stresses

in excess of the yield value, however, lead to defor-
mation rates and ¯ow. Materials behaving in the
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above-described manner include slurries, pastes, sus-
pensions of solids in liquids, and emulsions. Industries
in which viscoplastic behavior is encountered include

those dealing with: composite materials, rubber, phar-
maceuticals, biological ¯uids, plastics, petroleum, soap
and detergents, cement, food products, paper pulp,

paint, light and heavy chemicals, oil ®eld operations,
fermentation processes, plastic rocket propellants, elec-
trorheological ¯uids, ore processing, and printing.

Typical yield stress values can vary from less than a
Pascal for blood [3] to tens of thousands of Pascals for

plastic rocket propellants [4] and carbon black ®lled
polymers [5].
The review paper by Bird et al. [1] provided a sum-

mary of known analytical solutions for the ¯ow and
heat transfer rates of Bingham plastics. All con®ned
¯ows of Bingham plastics that were described in this

review paper, however, were within simple geometries,
i.e., those containing an unsheared plug whose bound-
aries are parallel to the physical boundaries. Heat

transfer studies of Bingham plastics ¯owing in complex
geometries in which the physical boundaries are not

Nomenclature

Br Brinkman number, Zpu
2
b=

�k�Ti ÿ Tw�
d, D diameters of small and large pipes
ER expansion ratio, D/d
�k thermal conductivity of ¯uid
Lr reattachment length
Nu Nusselt number based on bulk temperature,

@ y
@ r jRw

=yb

Pr Prandtl number, Zp=ra
P non-dimensional pressure, P �=ru2b
r non-dimensional radial distance, r�=rw

rw, Rw radii of small and large pipes
Re Reynolds number, rdub=Zp

S step height, S � rw

T temperature
u non-dimensional streamwise velocity, u�=ub

ub streamwise bulk velocity, 2p
� rw

0 u�r� dr�=pr2w
x non-dimensional streamwise distance, x �=S
Y yield number, tyd=2Zpub

a thermal di�usivity
_gij rate of deformation tensor, @ui=@xj �

@uj=@x i

_gII second invariant of rate of deformation ten-
sor, _gij _gij

Zp plastic viscosity

k center-body-blockage-ratio
meff non-dimensional e�ective viscosity, meff �

m�eff=Zp

y non-dimensional temperature, �Tÿ
Tw�=�Ti ÿ Tw�

r density

tij stress tensor element
ty yield stress
c non-dimensional stream function, u �

�1=r��@c=@ r�,v � ÿ�1=r��@c=@x�
zÿ, z� non-dimensional lower and upper radial

limits of the annular plug core

Subscripts

� dimensional quantities
b bulk properties
i, w inlet and wall properties
min, max minimum and maximum values

Fig. 1. Schematic diagram of ¯ow geometry and coordinate system.
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parallel are very limited. Additionally, most recent
heat transfer studies of Bingham ¯uids, such as those

by Vradis et al. [6] and Min et al. [7], focus on
entrance pipe ¯ows.
In summary, despite the considerable importance of

Bingham ¯uids and their diverse applications, heat
transfer studies related to complex and con®ned ¯ows
of such ¯uids have received little attention so far [8,9].

The present work, therefore, focuses on more complex
non-isothermal con®ned ¯ows of such non-Newtonian
¯uids. The selected ¯ow geometry, shown in Fig. 1, is

characterized by corner and central recirculation zones,
when the ¯uid is Newtonian. Depending on the geo-
metrical parameters, the ¯uid properties and the ¯ow
parameters, the ¯ow downstream of the expansion

plane may separate, re-attach and re-develop, thus
forming corner and central recirculation zones. Using
planar laser-sheet visualizations, Hammad et al. [10]

demonstrated that separation, when a yield stress ¯uid
suddenly expands, may or may not take place due to
the possibility of forming a corner, ramp-like, non-

moving zone. In addition, the impingement region of a
separating yield stress ¯uid, was characterized by the
existence of a non-deforming, attached to the wall,

zone whose extent and location varied with the govern-
ing parameters.
Suddenly expanding internal ¯ows are frequently

encountered in engineering practice either by design, to

promote mixing and enhance heat/mass transfer, or by
default, such as devices commonly found in piping sys-
tems that are part of the ¯uid processing and trans-

port. The unavoidable geometrical changes present in
lines and processing equipment give rise to con®ned
separated ¯ow regions. Detailed understanding of the

impact of geometrical changes encountered in practice
on hydrodynamic conditions and the associated heat/
mass transfer processes is, therefore, important. The
geometrical simplicity and hydrodynamic complexity

of the selected ¯ow problem are the primary motives
for selecting it to investigate the e�ects of the ¯ow
structure on heat transfer rates to the con®ning ge-

ometry in complex viscoplastic ¯ow ®elds. The sudden
expansion geometry is an ideal test geometry that is
frequently encountered in practice. It has been used to

shed light on the physics of wall-bounded separated
and re-attached ¯ows as well as the associated heat/
mass transfer phenomenon [11±18]. A sudden expan-

sion geometry has also been used to model ¯ow and
mass transfer in biological systems [19±23].

2. Governing equations

Based on the constitutive Eqs. (2a) and (2b), the
non-dimensional form of the equations governing the
incompressible, steady-state as well as constant proper-

ties ¯ow of a Bingham ¯uid in an axisymmetric geome-
try is:

. Continuity

1
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. Equation of energy
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Here, meff � m�eff=Zp is the non-dimensional e�ec-
tive viscosity expressed as follows

meff

ÿ
_gII

� � 1� Y���������
1

2
_gII

r for tII > 2t2y �7a�

meff

ÿ
_gII

� � 1 for tIIR2t2y �7b�
In cylindrical coordinates 1

2
_gII is given by:

1
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Given a ®xed axisymmetric geometry, the velocity,

temperature and pressure ®elds obtained via numeri-
cally solving the above non-dimensionalized form of
the governing equation, i.e., Eqs. (3)±(6), along with

the Bingham constitutive Eqs. (7a) and (7b), are a
function of Re, Pr, Br and Y. These non-dimensional
numbers are de®ned as follows:
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Y � tyd
2Zpub

, Re � rdub

Zp

,

Pr � Zp

ra
and Br � Zpu

2
b

�k�Ti ÿ Tw �

�9�

The other non-dimensional variables appearing in Eqs.
(3)±(6) are:

x � x �

S
, r � r�

S
, u � u�

ub

, v � v�

ub

,

p � p�

ru2b
and y � Tÿ Tw

Ti ÿ Tw

�10�

The primary di�culty in obtaining numerical solution

to complex ¯ow problems (i.e., ones where the bound-
aries of the con®ning geometry are not parallel), of vis-
coplastic ¯uids is the existence of a surface separating

the regions of sheared ¯uid from those of non-sheared
¯uid. Utilizing the previously described e�ective vis-
cosity formulation eliminates the need to track the sur-

face separating these two ¯ow regions and simpli®es
the solution. It leads, however, to singularities since
the e�ective viscosity meff attains an in®nite value in
regions where _gij � 0, such as core regions of the ¯ow.

In order to avoid such a problem, Eqs. (7a) and (7b)
are replaced by the following constitutive equation, a
similar dimensional form of which was originally pro-

posed by Papanastasiou [24]:

meff

ÿ
_gII

� � 1� Y���������
1

2
_gII

r
 
1ÿ e

ÿm

�������
1

2
_gII

r !
�11�

Here, m is an exponential growth parameter. This
approach has been utilized and proved to provide a
good approximation of a Bingham ¯uid rheology at

both the low and high ends of the shear rate spectrum,
see Ellwood et al. [25]. Extensive numerical experimen-

tation led to the establishment of m � 1000 as high
enough to obtain accurate solutions. This is further
veri®ed via comparing analytical axial velocity pro®les

corresponding to fully developed ¯ow conditions in the
downstream pipe to those computed at m � 1000: As
Fig. 2 shows, the agreement between analytical and
computed results is excellent.

3. Method of solution

The governing partial di�erential Eqs. (3)±(7b) are
solved numerically utilizing a ®nite-di�erence scheme.
This solution technique has been tested and proved to

be highly accurate and computationally e�cient for
solving non-Newtonian convective heat transfer prob-
lems [16,26]. Fully second order accurate ®nite-di�er-

ence approximations are used for the derivatives
appearing in the governing equations. Centered di�er-
ences are used in all cases with the exception of the
convective streamwise derivatives, which are upwinded,

using ®rst order approximations. Further details
regarding the ®nite-di�erence form of the governing
partial di�erential equations along with the solution

methodology can be found in either in [26] or [16],
and, therefore, will not be repeated here.
The boundary conditions selected for the present

¯ow and heat transfer problem are:

At inlet u � u�r�, v � 0, y � 1

At vertical wall and solid center-body u � 0, v � 0,

y � 1

Fig. 2. Comparison of computed fully developed velocity pro®les, in the downstream pipe when m � 1000, with the analytical ones

for Y � f0,1,5g:
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At downstream horizontal wall u � 0, v � 0, y � 0

Along the centerline v � @u

@r
� @p

@ r
� @y
@r
� 0

At outlet v � p � @u

@x
� @ �y=yb �

@x
� 0

The outlet boundary conditions were applied suf-

®ciently far downstream the plane of expansion to
ensure that the computed results were independent of
the location of application of these boundary con-

ditions. All computations employed a 150 � 80 grid.
As shown in Fig. 3, a small and uniform vertical grid
spacing was used while the horizontal ones were vari-

able and adjusted such that, grid clustering was

achieved in the vicinity of the expansion plane and

point of reattachment. Fig. 3 also contains an overview

of the velocity vector distribution superposed on the

¯ow ®eld streamlines. Extensive numerical experimen-

tation established the grid-independent nature of the

results obtained using the above-de®ned grid (e.g. A

200 � 100 grid resulted in ¯ow ®eld characteristics,

such as reattachment lengths, Lr, and axial distri-

butions of wall heat transfer rates that were identical

to the ones obtained using the 150 � 80 grid). Further,

some of the presently computed results are compared

to an experimental set of data obtained by Hammad et

al. [18] and the ¯ow visualization results of Macagno

and Hung [11]. The comparison, shown in Fig. 4, dis-

Fig. 3. (a) Computational grid superposed on streamlines; (b) velocity ®eld superposed on streamlines. Both are for Y � 0,

Re � 100 and k � 0:6:
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plays the e�ect of the Reynolds number on the length

of reattachment, Lr, for a Newtonian ¯uid in the
absence of a center-body. It can be seen that the re-

attachment length increases linearly with the Reynolds

number. In addition, a very favorable agreement is
obtained between the present numerical predictions

and the experimental results.

The axial velocity pro®le between the solid center-

body and the con®ning upstream pipe, i.e., prior to the
expansion plane, is identical to that of a fully devel-

oped annular ¯ow of a Bingham ¯uid. As shown in

Fig. 5 this annular ¯ow is characterized by the exist-

ence of two liquid regions in the vicinity of both the
solid center-body and outer pipe. The ®rst liquid

region lies within k and zÿ, while the second is

bounded by z� and 1. A core plug zone having a
radial extent of z� ÿ zÿ separates these two liquid

regions. For a Newtonian ¯uid, i.e., Y � 0, z� ÿ zÿ �
0: The magnitude of z� ÿ zÿ, however, increases with
Y and asymptotically approaches 1ÿ k, as Y41 .

The dimensional form of the fully developed axial vel-

ocity pro®le of a Bingham plastic between two con-

Fig. 4. Reattachment length variation with Reynolds number for Y � 0 and k � 0: A comparison between computed and available

experimental data.

Fig. 5. Schematic diagram of a viscoplastic ¯ow ®eld between two concentric pipes.
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Fig. 6. In¯uence of center-body-blockage-ratio on non-dimensional e�ective viscosity ®elds for Re � 200 and Y � f1,5g:
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centric pipes can be found in [1]. The corresponding
non-dimensional form of the velocity pro®le, based on

the variables used here, is given below:

u�r� � 1ÿ k2

x

�r
k
rÿ1
ÿ
z�zÿ ÿ r2 ÿ

ÿ
z� ÿ zÿ

��
dr

for kRrRzÿ
�12a�

u�r� � umax � u�zÿ� � u
ÿ
z�
�

for zÿRrRz� �12b�

u�r� � 1ÿ k2

x

�1
r

rÿ1
ÿ
r2 ÿ

ÿ
z� ÿ zÿ

�
ÿ z�zÿ

�
dr

for z�RrR1

�12c�

where

x �
�zÿ
k

r
ÿ
r2 �

ÿ
z� ÿ zÿ

�
ÿ z�zÿ

�
drÿ

�1
z�
r
ÿ
z�zÿ ÿ r2

�
ÿ
z� ÿ zÿ

��
dr

Here, zÿ and z� are obtained from the condition
u�zÿ� � u�z��, which requires solving for the roots of

the following equations:�zÿ
k

rÿ1
ÿ
z�zÿ ÿ r2 ÿ

ÿ
z� ÿ zÿ

��
dr

ÿ
�1
z�
rÿ1
ÿ
r2 ÿ

ÿ
z� ÿ zÿ

�
ÿ z�zÿ

�
dr

� 0

�13�

�1ÿ k2 �
ÿ
z� ÿ zÿ

�
Y

ÿ
�zÿ
k

r
ÿ
r2 ÿ

ÿ
z� ÿ zÿ

�
ÿ z�zÿ

�
drÿ

�1
z�
r
ÿ
r2 ÿ

ÿ
z� ÿ zÿ

�
ÿ z�zÿ

�
dr

� 0 �14�

4. Results and discussion

Heat transfer rates from the laminar viscoplastic
¯ow ®eld within the geometry depicted in Fig. 1 to the
surrounding walls are in¯uenced by the expansion

ratio (ER ); the Reynolds (Re ), yield (Y ), Prandtl (Pr ),
and Brinkman (Br ) numbers; and the blockage ratio
�k). The heat transfer results to be presented are

obtained from a systematic parametric study in which,
these governing parameters were assigned the following
values: ER � f2g; Re � f100,200,400g; Y � f0,1,5g;

Pr � f1,7,15g; Br � f0,1,2g; k � f0,0:4,0:6g: All ¯uid
properties are assumed to be temperature and pressure

independent throughout this study.

4.1. E�ective viscosity ®elds

The complexity of the ¯ow patterns existing inside

the present geometry is best illustrated via inspecting
the non-dimensional e�ective viscosity �meff � distri-
butions shown in Fig. 6 for Re � 200 and k �
f0,0:4,0:6g: Fig. 6(a)±(c) correspond to Y � 1, while
Fig. 6(d)±(f) correspond to Y � 5: When the center-
body is absent, as shown in Fig. 6(a) and (d), the con-
®ned ¯ow structure is typically characterized by a plug

zone existing around the centerline in the upstream
pipe that vanishes, once the plane of expansion is
passed. The destruction of the plug zone is followed by

high rates of deformation region along the centerline.
The onset of formation of another plug zone, at a cer-
tain downstream location, indicates a downstream ¯ow

®eld redevelopment. Complete development of the
downstream plug zone implies that fully developed
conditions have been established. Flow ®eld redevelop-
ment downstream of the expansion plane becomes

more rapid when the yield number is increased from 1
to 5, as noticed from the earlier appearance of the
plug zone in the downstream pipe, Fig. 6(a) and (d).

These observations are in agreement with those of
Scott and Mirza [27], and Vradis and OÈ tuÈ gen [28].
Both have numerically studied axisymmetric sudden

expansion ¯ows of a Bingham plastic and established
the rapid reduction in ¯ow redevelopment and reat-
tachment lengths when increasing a non-dimensiona-

lized yield stress.
At a ®xed Reynolds number and for a given geome-

try, i.e., ®xed ER and k, the formation of a corner vor-
tex depends on the yield number value. For low yield

numbers, Fig. 6(a), a corner vortex forms. For high
yield numbers, a substantial non-moving, ramp-like,
corner zone replaces the corner vortex, as clearly evi-

denced from the large corner values of meff shown in
Fig. 6(d). In general, a corner vortex exists for a com-
bination of high Reynolds and low yield numbers.

Also, for yield stress ¯uids, a non-deforming, attached
to the wall, impingement zone and another very small,
stagnant, corner zone accompany the formation of the
corner vortex, as clearly shown in Fig. 6(a). Accurate,

digital particle image velocimetry measurements [29]
and planar, laser-sheet visualizations [10] support these
conclusions related to transitions in the observed ¯ow

patterns. These important ¯ow pattern transitions were
®rst observed, experimentally, by Hammad et al. [10]
and have not been reported in any similar previous

study, including the numerical studies by Scott and
Mirza [27], Vradis and Hammad [8] and Vradis and
OÈ tuÈ gen [28].
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Fig. 7. Streamlines and Isotherms variation with center-body-blockage-ratio, for Re � 200, Pr � 7, Br � 0 and Y � f0,1,5g:
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The placement of a solid center-body upstream of

the expansion, shortens the redevelopment length and

reduces the extent of both the corner and the impinge-

ment ¯ow regions, Fig. 6(a)±(f). These changes can be

attributed to both, more e�ective momentum di�usion

mechanisms towards the surrounding walls and the

central counter-rotating pair of vortexes. The center of

each vortex existing in the ¯ow ®eld generally possesses

a meff value that is distinctly higher than those around

it. On the other hand, the overall meff distribution

within a vortex depends on the recirculation intensity.

For example, the corner vortex appearing in Fig. 6(a)

is weaker in comparison to the ones shown in Fig.

6(b)±(c), and is characterized, therefore, by higher
overall meff values.

4.2. Streamlines and isotherms

The streamline contour plots shown in Fig. 7
demonstrate the e�ect of the center-body-blockage-

ratio, k � f0,0:4,0:6g, on the ¯ow ®eld for Y � f0,1,5g:
To illustrate the impact of the ¯ow structure on the
thermal ®eld characteristics, the isotherms y �
f0:1,0:2,0:3,0:4,0:5,0:6,0:7,0:8,0:8,0:9g corresponding to
Pr � 7 and Br � 0, are also displayed in Fig. 7. The
y � 0:1 isotherms are close to the walls, while those of

Fig. 8. Relative corner eddy intensity versus yield number for Re � f50,100,200g and k � f0,0:6g:
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y � 0:9 are close to the centerline. The Reynolds num-

ber for all cases shown in Fig. 7 was ®xed at 200. For

the Newtonian ¯uid case, Fig. 7(a)±(c), the corner ¯ow

region consists of a substantial corner vortex. For

Y � 1, the corner vortexes formed are smaller and

weaker in comparison to those corresponding to Y �
0: For Y � 5, the streamlines shown in Fig. 7(g)±(i)

display a substantial, stagnant, corner zone, as

opposed to the corner vortex obtained for the yield

numbers 0 and 1. For yield stress ¯uids, a non-moving

impingement zone, as shown in Fig. 7(d)±(f), bound

the corner ¯ow region. The case corresponding to

k � 0, Fig. 7(d), captures what happens immediately

after the onset of deformation in the corner region,

as evidenced from the formation of a weak corner vor-

tex, large impingement zone and a small corner dead

zone.

The placement of the center-body leads to the fol-

lowing:

1. the creation of a central vortex whose size and

intensity increase with k;
2. strengthens the corner vortex and reduces its axial

extent as shown in Fig. 7(a)±(f), for Y � 0 and 1;

3. shortens the redevelopment length as shown in Fig.

7(a)±(i), for Y � 0, 1 and 5; and

4. smaller impingement and stagnant corner zones as

shown in Fig. 7(d)±(f) and (g)±(i), respectively.

The impact of center-body placement on the thermal

®eld include: (1) increased distortions of the isotherms

in the vicinity of the corner as can be seen from the

temperature distributions corresponding to Y � 0 and

1; and (2) more pronounced, local, compressions in the

thermal boundary layer by either the corner vortex or

the incoming wall bound ¯ow. The ®rst e�ect is at-

tributed to the rise in corner recirculation intensity

with k, and seems to be restricted to the corner vortex

domain. Also, increasing the intensity of the corner

vortex at a constant Pr, leads to isotherms having a

shape that is closer to that of the ¯ow streamlines. The

second e�ect steepens temperature gradients and is

expected to increase wall heat transfer rates. The local

compressions in the thermal boundary layer appearing

in the corner vortex region and downstream of the

impingement region are most clearly seen in the iso-

therm plots shown in Fig. 7(e) and (f). The non-

deforming, attached to the wall region, appearing in

Fig. 7(d)±(f), gives rise to a di�usion limited heat

transfer zone that is characterized by, for Pr > 1, a

thicker thermal boundary layer than those displayed

further upstream or downstream. Di�usion limited

heat transfer zones are associated with vanishing rates

of deformation regions existing throughout the ¯ow

®eld of yield stress ¯uids such as moving plug zones,

characterized by zero velocity-gradients (typically

found close to the centerline), or ®nite-size non-moving

zones (attached to the wall such as impingement and
corner zones).

4.3. Corner eddy intensity

For a given geometry, i.e., ®xed ER and k, the for-
mation of a corner eddy or vortex depends on the

values of both Re and Y. For every Reynolds number,
there is a corresponding critical yield number �Ycr �
Ycr�Re��: A corner eddy exists whenever Y < Ycr, as

was shown earlier in Fig. 7(a)±(f). Also, for yield stress
¯uids, a non-moving wall impingement zone and
another very small dead corner zone accompany the
formation of a corner eddy. If Y > Ycr, then only a

substantial corner dead zone exists, as was shown in
Fig. 7(f)±(i). The variation of the critical yields number
with both, the Reynolds number and k is illustrated in

Fig. 8. Fig. 8 is a plot of the relative corner eddy
intensity against the yield number, for
Re � f50,100,200g, as shown in Fig. 8(a) and 6(b),

when the center-body-blockage-ratio is 0 and 0.6, re-
spectively. The relative corner eddy intensity (RCEI) is
de®ned as the maximum amount of back ¯ow in the
vortex region relative to the inlet ¯ow rate or

ÿcmin=cmax: Fig. 8(c) compares the variation of RCEI
with the yield number at k � 0 to that of k � 0:6,
when the Reynolds number is ®xed at 200. Fig. 8

demonstrates the strong dependency of RCEI on the
yield number, the Reynolds number and the center-
body-blockage-ratio, which decreases with Y, while

increasing with both Re and k: For zero yield stress
¯uids, the dependence of RCEI on the Reynolds num-
ber weakens at high Reynolds numbers, hinting at the

existence of an asymptotic limit. For ReR200 and
kR0:6, as shown in Fig. 8(a) and (b), a yield number
of 2.25 is more than su�cient to bring the corner vor-
tex to a total halt, and thus creating a substantial cor-

ner dead-zone. Increasing the yield number and
reducing the Reynolds number would always lead to a
reduction in the eddy intensity. This is expected since

larger yield numbers increase the viscosity values
throughout the eddy region, thus lowering rates of de-
formation and, hence, recirculation intensity. Also, at

®xed Y and k values, increasing Re lead to increased
momentum transfer into the corner region and thus
intensi®es the recirculation. The monotonic and rather
signi®cant decrease of RCEI with the yield number at

either a constant Reynolds number or a constant k is
rather linear, as clearly shown in Fig. 8(a)±(c).
Therefore, a linear regression ®t was used to extract

critical yield numbers corresponding to all cases shown
in Fig. 8. The critical yield number is Y, at which
RCEI becomes zero. For k � 0, the Ycr values were

0.96, 1.43 and 2.07, when the Reynolds numbers were
50, 100 and 200, respectively. However, for k � 0:6,
the Ycr values were 0.48, 0.961 and 2.06.
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4.4. Wall heat transfer rates

Transitions in the ¯ow patterns within the present

geometry, in¯uence heat transfer from the viscoplastic
¯uid to the surrounding walls. To illustrate these in¯u-

ences, the computed Nusselt numbers (Nu ) are nor-
malized with the fully developed ones prevailing far
downstream of the expansion �Nufd), and used to pre-

sent Nu=Nufd vs. x. In the present study, Nufd depends
on k, Y and Br. To better elucidate the impact of local

Fig. 9. In¯uence of Reynolds number on wall heat transfer distributions for Pr � 7 and Br � 0:
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hydrodynamic conditions, zero wall shear stress lo-

cations, i.e., x at tw � 0, are highlighted by the

presence of solid arrows. Each zero wall shear stress

point marks the axial extent of the corner ¯ow region,

which is bounded by either the reattachment point

(Newtonian ¯uid) or the center of the impingement

region center (separated viscoplastic ¯ow ®eld, e.g.

Y � 1 and Re � 200). A special emphasis is paid to the

Fig. 10. In¯uence of Prandtl number on wall heat transfer distributions for Re � 200 and Br � 0:
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relative location of all peak heat transfer points to that
of tw � 0 and how both are a�ected by the governing

parameters.

4.4.1. Reynolds number e�ect
In¯uence of Reynolds number on heat transfer dis-

tributions along the downstream pipe are demon-
strated in Fig. 9 for Re � f100,200,400g, Y � f0,1,5g
and k � f0,0:6g: The Prandtl and Brinkman numbers
are ®xed at 7 and 0, respectively. The shown arrows,
mark the axial locations of the reattachment point
(Fig. 9(a) and (d)) and the center of impingement

Fig. 11. In¯uence of viscous heating on wall heat transfer distributions for Re � 200, and Pr � 7:
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region �Re � 200 and 400 in Fig. 9(b) and (e)). Cases
corresponding to Re � 100 in Fig. 9(b) and (e) as well
as all those shown in Fig. 9(c) and (f) result in a non-

moving corner zone. As shown, all arrows move down-
stream with the Reynolds number, which, in turn,
leads to a similar movement in the maximum heat

transfer points, i.e., further downstream. Additionally,
increasing the Reynolds number can lead to the mobil-
ization of the corner non-moving zone and the creation

of a corner recirculation region and another stagnant
impingement region, as shown in Fig. 9(b) and (e). As
shown in Fig. 9, Nu=Nufd pro®les characterized by a

Fig. 12. In¯uence of center-body-blockage-ratio on wall heat transfer distributions for Re � 200, Pr � 7, and Br � 0:
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single peak value are associated with either Newtonian
or non-separating viscoplastic ¯ow patterns. The

appearance of two peak Nu=Nufd values, is only poss-
ible for a separating, i.e., corner vortex forming, visco-
plastic ¯ow pattern. These two peak values are located

close to the corner vortex center and downstream of
the impingement region. For a Prandtl number of 7,
the appearance of the two peak points indicates that

convection plays a more important heat transfer role,
within these two ¯ow regions, compared to that of
molecular di�usion. However, di�usion heat transfer

dominates throughout all vanishing rates of defor-
mation regions, such as the impingement ¯ow region
corresponding to Y � 1, which, for Pr > 1, result in a
sudden drop in the heat transfer rates to the con®ning

walls, as clearly seen in Fig. 9(b) and (e).

4.4.2. The e�ect of Prandtl number
The impact of Prandtl number on heat transfer dis-

tributions along the downstream pipe are illustrated in
Fig. 10 for Pr � f1,7,15g, Y � f0,1,5g and k � f0,0:6g:
The Reynolds and Brinkman numbers are ®xed at 200
and 0, respectively. For Re � 200, the critical yield
numbers are 2.07 and 2.06 when k � 0 and 0.6, re-

spectively. Therefore, all curves shown in Fig. 10(b)
and (e), for Y � 1, correspond to a separating visco-
plastic ¯ow ®eld, while those of Fig. 10(c) and (f), for

Y � 5, are associated with a non-separating viscoplas-
tic ¯ow ®eld. The arrows appearing in Fig. 10(a) and
(d) indicate the position of the reattachment point,
while those of Fig. 10(b) and (e) mark the axial pos-

ition of the center of the impingement region.
The early comments regarding how transitions in the

¯ow pattern a�ect the overall wall heat transfer

characteristics remain valid for Pr � 1, 7 and 15.
However, for Y � 0 and Pr � 1, Nu=Nufd increases
monotically with x, as shown in Fig. 10(a) and (d).

Whenever applicable, the heat transfer augmentation
close to both the corner vortex center and/or down-
stream of the impingement region is more dramatic for

larger Prandtl numbers. The highest wall heat transfer
augmentation, i.e., Nu=Nufd � 3, corresponds to Y � 5,
Pr � 15 and k � 0:6:

4.4.3. The e�ect of viscous heating
Viscous heating e�ects on the amount of heat trans-

ferred to the downstream wall are investigated by vary-

ing the Brinkman number as shown in Fig. 11 for
Br � f0,1,2g Y � f0,1,5g and k � f0,0:6g: The Reynolds
and Prandtl numbers are ®xed at 200 and 7, respect-

ively. As shown, heat transfer enhancement, i.e.,
Nu=Nufd > 1, does not appear for Br � 1 and 2. For
Br > 0, or whenever viscous heating is incorporated,

increasing Br results in higher overall Nu=Nufd distri-
butions. It should be emphasized that, for ®xed Y and
k values, NufdjBr>0 here is much larger than NufdjBr�0,

which accounts for the large discrepancy between
NufdjBr�0 and Nu=NufdjBr>0 pro®les shown in Fig. 11.

For example, at Y � 0 and k � 0, NufdjBr�0 � 0:92 and
NufdjBr>0 � 2:4: For Y � 5 and k � 0, NufdjBr�0 � 1:26
and NufdjBr>0 � 7:4: A detailed treatment of viscous

heating e�ects on Nufd can be found in Payvar [30].

4.4.4. The e�ect of center-body-blockage-ratio

Variations in wall heat transfer distributions with
center-body-blockage-ratio are shown in Fig. 12 for
k � f0,0:4,0:6g and Y � f0,1,5g: The Reynolds, Prandtl

and Brinkman numbers are ®xed at 200, 7 and 0, re-
spectively. All arrows appearing in Fig. 12(a) mark the
axial positions of the reattachment point, while those
of Fig. 12(b) are located at the center of the impinge-

ment region.
Increasing k reduces reattachment and redevelop-

ment lengths and leads to upstream movement of peak

Nu=Nufd points. For Newtonian ¯uids, increasing k
strengthens the corner vortex and shifts the maximum
heat transfer point location from downstream to

upstream of the reattachment point. For Y � 0 and 1,
the peak Nu=Nufd values appearing downstream of the
impingement region grow continuously with k: For

non-separating viscoplastic ¯ow ®eld or Y � 5, the
obtained peak Nu=Nufd value is practically insensitive
to variations in center-body-blockage-ratio. An exam-
ination of Figs. 8 and 12(a) and (b) reveals that all

peak Nu=Nufd values appearing within the corner vor-
tex region are proportional to the recirculation inten-
sity. Separating viscoplastic ¯ow ®elds result in ®nite-

size, attached to the wall, impingement regions. These
non-moving impingement regions are di�usion limited
heat transfer zones that lead to, for Pr > 1, a substan-

tial drop in wall heat transfer rates as clearly demon-
strated in Fig. 12(b).

5. Concluding remarks

The impact of hydrodynamic conditions on heat
transfer phenomenon in a complex viscoplastic ¯ow

®eld was studied by simulating non-isothermal visco-
plastic ¯ows through the geometry shown in Fig. 1.
Depending on the governing parameters, suddenly
expanding viscoplastic ¯ows can display either of the

following ¯ow patterns:

. Typical separating and reattaching viscous ¯ow ®eld
that is characterized by a recirculation zone bounded

by a reattachment point (Newtonian ¯uids).
. A separating viscoplastic ¯ow ®eld that results in a

weak recirculation zone bounded by a ®nite-size,

attached to the wall, stagnant impingement region
(obtained for a combination of low yield numbers
and high Reynolds numbers).
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. A non-separating viscoplastic ¯ow ®eld that forms a
substantial, ramp-like, stagnant zone behind the

plane of ¯ow expansion (obtained for a combination
of high yield numbers and low Reynolds numbers).

The qualitative and quantitative features of the curves

that describe the axial distributions of wall heat trans-
fer rates behind the plane of sudden expansion
strongly depend on the existing ¯ow pattern. For non-

dissipative ¯ows of Pr > 1 ¯uids, the heat transfer
curves exhibit the following features:

. The ®rst ¯ow pattern results in a steady increase of

the heat transfer rates to a peak value, around the
reattachment point, followed by a continuous
decline to the fully developed value obtained further

downstream. The placement of an upstream solid-
center-body increases the recirculation intensity and
leads to a shift in the location of the peak heat

transfer point from downstream to upstream of the
reattachment point.

. The second ¯ow pattern always leads to two local
heat transfer peaks, one close to the corner vortex

center, while the other is located downstream of the
impingement region. These two peaks form due to
the existence of the stagnant impingement region.

Stagnant ¯ow regions are di�usion limited heat
transfer zones that substantially suppress the local
heat transfer rates when Pr > 1:

. The third ¯ow pattern results in a steady increase of
the heat transfer rates to a peak value, downstream
of the stagnant zone, followed by a continuous
decline to the fully developed value. The peak heat

transfer values obtained here are in general higher
than those associated with the ®rst ¯ow pattern.

Non-dissipative ¯ows corresponding to Pr > 1 substan-

tially enhance heat transfer downstream of the expan-
sion plane, resulted here in Nusselt numbers that were
up to three times the downstream, fully developed

value. Heat transfer rates behind the plane of expan-
sion in the case of dissipative ¯ows were lower than
the fully developed values.
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